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In the presence of a PdI2-based catalytic system, 1,2-diols undergo an oxidative carbonylation process to
afford 5-membered cyclic carbonates in good to excellent yields (84–94%) and with unprecedented cat-
alytic efficiencies for this kind of reaction (up to ca. 190 mol of product per mol of PdI2). Under similar
conditions, 6-membered cyclic carbonates are obtained for the first time through a direct catalytic oxida-
tive carbonylation of 1,3-diols (66–74% yields).

� 2009 Elsevier Ltd. All rights reserved.
Cyclic carbonates are a very important class of carbonyl com-
pounds, with many important applications in various fields of Sci-
ence.1 They are usually prepared either by carboxylation (with CO2

or its derivatives as carboxylating agents) of suitable substrates
(such as diols, epoxides, and olefins) or by indirect carbonylation
(with phosgene or its derivatives, including acyclic carbonates, as
carbonylating agents) of diols.2 Surprisingly, however, the direct,
phosgene-free oxidative carbonylation of diols with carbon mon-
oxide (Eq 1, [OX] = oxidizing agent) has so far received limited
attention, in spite of the large availability of CO and the attractive-
ness of the process in view of its high atom economy3 and eco-
friendliness.
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The stoichiometric oxidative carbonylation of 1,2-diols to give
[1,3]dioxolan-2-ones was reported by Tam some years ago to be
promoted by PdCl2 in conjunction with 2 equiv of AcONa.4,5 Tam
also reported a catalytic version of his reaction [carried out in
the presence of 10% of PdCl2, CuCl2 as the oxidant (2 equiv with re-
spect to the substrate) and AcONa or Et3N as the base (2 equiv with
respect to the substrate)], which, however, was limited to the con-
version of 1-phenyl-1,2-ethanediol into 4-phenyl-[1,3]dioxolan-2-
one (with a catalytic turnover of 10) and of 1-(N-phenylamino)pro-
pane-2,3-diol into a ca. 3:1 mixture of 4-phenylamino-[1,3]dioxo-
lan-2-one and 5-hydroxymethyl-3-phenyloxazolidin-2-one (with a
total catalytic turnover of 7.4).4,6
ll rights reserved.
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We have recently reported that PdI2 in conjunction with an ex-
cess of KI is an excellent catalyst for realizing the oxidative carbon-
ylation of b-amino alcohols7 and amines8 to give 2-oxazolidinones
and ureas, respectively. We have now found that the PdI2-KI sys-
tem is also a very efficient catalyst for the conversion of 1,2-diols
into 5-membered cyclic carbonates, with unprecedented catalytic
efficiencies for this kind of reaction (up to ca. 190 mol of product
per mol of PdI2) (Eq 2, n = 0). Using the same catalyst, 6-membered
cyclic carbonates have been obtained for the first time through the
direct catalytic oxidative carbonylation of 1,3-diols (Eq 2, n = 1).
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Oxidative carbonylation reaction of 1,2-diols (n = 0) was carried
out at 100 �C under 20 atm of a 4:1 mixture of CO–air9 in N,N-
dimethylacetamide (DMA) as the solvent (substrate concentra-
tion = 0.5 mmol of 1 per mL of DMA), in the presence of
0.5 mol % of PdI2 in conjunction with 10 equiv of KI. Under these
conditions, after 15 h, 1,2-ethanediol 1a (n = 0, R1 = R2 = H) was
smoothly converted into [1,3]dioxolan-2-one 2a in 84% isolated
yield (Table 1, entry 1). To the best of our knowledge, this reaction
represents the first example of oxidative carbonylation of 1,2-eth-
anediol to give 2a with catalytic turnover.10–12

Under similar conditions, other 1,2-diols, bearing an alkyl or a
phenyl group substituent, such as butane-1,2-diol 1b (n = 0,
R1 = Et, R2 = H) and 1-phenylethane-1,2-diol 1c (n = 0, R1 = Ph,
R2 = H), behaved similarly, with formation of the corresponding



Table 1
Synthesis of 5-membered and 6-membered cyclic carbonates 2a–f by PdI2/KI-
catalyzed oxidative carbonylation 1,2- and 1,3-diols 1a–fa
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Entry n R1 R2 1 1: PdI2

molar
ratio

Time
(h)

Conversion
of 1 (%)b

2 Yield
of
2 (%)c

1 0 H H 1a 200 15 100 2a 84
2 0 Et H 1b 200 15 100 2b 94
3 0 Ph H 1c 200 15 100 2c 94
4 1 H H 1d 200 15 80 2d 42
5 1 H H 1d 100 15 100 2d 74
6 1 Me H 1e 100 24 100 2e 66
7 1 H Me 1f 100 24 100 2f 68

a All reactions were carried out in DMA (substrate concentration = 0.5 mmol of 1/
mL of DMA, 4 mmol scale based on 1) at 100 �C under 20 atm of a 4:1 mixture of
CO-air in the presence of PdI2 in conjunction with 10 equiv of KI.

b Determined by GLC.
c Isolated yield based on starting 1.
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cyclic carbonates 2b–c with isolated yields higher than 90% (Ta-
ble 1, entries 2 and 3).11,13

Our method could also be successfully applied to the first direct
catalytic oxidative carbonylation of 1,3-diols, such as 1,3-propane-
diol 1d (n = 1, R1 = R2 = H), 1,3-butanediol 1e (n = 1, R1 = Me,
R2 = H), and 2-methylpropane-1,3-diol 1f (n = 1, R1 = H, R2 = Me)
to give the corresponding [1,3]dioxan-2-ones 2d–f in good yields
(Table 1, entries 4–7). As expected in view of their higher confor-
mational mobility, 1,3-diols turned out to be less reactive with re-
spect to 1,2-diols: thus, the reaction of 1d, carried out under the
same conditions as previously employed for 1,2-diols 1a–c (Table 1,
entries 1–3), led to a substrate conversion of 80%, with an isolated
yield of [1,3]dioxan-2-one 2d of 42% (Table 1, entry 4). Better re-
sults were however obtained by working with a lower substrate-
to-catalyst molar ratio: with 1 mol % of PdI2, the substrate conver-
sion was quantitative after 15 h, and the yield of 2d increased to
74% (Table 1, entry 5). Under the same conditions, the reactions
of 1e and 1f were slightly slower: the substrate conversion reached
100% after 24 h, with isolated yields of the corresponding 6-mem-
bered cyclic carbonates 2e and 2f of 66% and 68%, respectively (Ta-
ble 1, entries 6 and 7).14–16

On the basis of what is already known on PdI2-catalyzed oxida-
tive carbonylation reactions,17 formation of 2a may be interpreted
as occurring as shown in Scheme 1 (anionic iodide ligands are
omitted for clarity). Thus, formation of the alkoxycarbonylpalladi-
um species I takes place through the reaction between the alco-
holic function of the substrate, CO, and PdI2, with elimination of
OH
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Scheme 1. Mechanism of the PdI2-catalyzed oxidative carbonylation of diols 1 to
give cyclic carbonates 2. Anionic iodide ligands are omitted for clarity.
HI. Complex I may then undergo intramolecular nucleophilic dis-
placement by the second hydroxyl group, with formation of 2a
and elimination of Pd(0) and HI. Alternatively, intermediate I
may convert into palladacycle derivative II with elimination of
HI. Reductive elimination eventually leads to the final product
and Pd(0). In any case, Pd(0) is then reoxidized to PdI2 according
to the mechanism we demonstrated several years ago,18 involving
initial oxidation of HI by O2 to give I2 followed by oxidative addi-
tion of the latter to Pd(0).

In conclusion, we have developed the first general method for
the catalytic direct oxidative carbonylation of both 1,2- and 1,3-
diols, to give the corresponding cyclic carbonates in good to excel-
lent yields (66–94%) and high catalytic efficiencies (up to ca.
190 mol of product per mol of palladium). The present phosgene-
free, atom-economical approach for the preparation of cyclic car-
bonates thus represents a valuable alternative to the currently
known methods for their production.
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